Regularity in C*-algebras and topological dynamics

Wilhelm Winter

WWU Münster

ECNU Shanghai, 14.5.2013

C*-algebraic regularity

Some classification result

Dynamic regularity: Z-actions

Towards other group action

Let A be a C*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, $\dim_{\mathsf{nuc}} A \leq n$, if the following holds:

Let A be a C*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, $\dim_{\mathsf{nuc}} A \leq n$, if the following holds:

For any $\mathcal{F}\subset A$ finite and any $\varepsilon>0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

Let A be a C*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, $\dim_{\mathsf{nuc}} A \leq n$, if the following holds:

For any $\mathcal{F}\subset A$ finite and any $\varepsilon>0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

with F finite dimensional, ψ c.p.c., φ c.p. and

$$\varphi \circ \psi =_{\mathcal{F},\varepsilon} \mathsf{id}_A,$$

Let A be a C*-algebra, $n \in \mathbb{N}$. We say A has nuclear dimension at most n, dim_{nuc} $A \le n$, if the following holds:

For any $\mathcal{F} \subset A$ finite and any $\varepsilon > 0$ there is an approximation

$$A \xrightarrow{\psi} F \xrightarrow{\varphi} A$$

with F finite dimensional, ψ c.p.c., φ c.p. and

$$\varphi \circ \psi =_{\mathcal{F},\varepsilon} \mathsf{id}_A,$$

and such that F can be written as

$$F = F^{(0)} \oplus \ldots \oplus F^{(n)}$$

with c.p.c. order zero maps

$$\varphi^{(i)} := \varphi|_{F^{(i)}}.$$

DEFINITION/PROPOSITION (using Toms-W, Rørdam-W)

A unital C*-algebra A is \mathcal{Z} -stable if and only if for every $K \in \mathbb{N}$ there are c.p.c. order zero maps

$$\Phi: M_K \to A_\infty \cap A'$$

and

$$\Psi: M_2 \to A_\infty \cap A'$$

DEFINITION/PROPOSITION (using Toms-W, Rørdam-W)

A unital C*-algebra A is \mathcal{Z} -stable if and only if for every $K \in \mathbb{N}$ there are c.p.c. order zero maps

$$\Phi: M_K \to A_\infty \cap A'$$

and

$$\Psi: M_2 \to A_\infty \cap A'$$

such that

$$\Psi(e_{11}) = \mathbf{1} - \Phi(\mathbf{1}_{M_K})$$

and

$$\Phi(e_{11})\Psi(e_{22}) = \Psi(e_{22})\Phi(e_{11}) = \Psi(e_{22}).$$

DEFINITION

A unital simple C*-algebra A has m-comparison, if whenever $0 \neq a, b \in M_{\infty}(A)_+$ satisfy

$$d_{\tau}(a) < d_{\tau}(b)$$

for all $\tau \in QT(A)$, then

$$a \lesssim 1_{m+1} \otimes b$$

DEFINITION

A unital simple C*-algebra A has m-comparison, if whenever $0 \neq a, b \in M_{\infty}(A)_+$ satisfy

$$d_{\tau}(a) < d_{\tau}(b)$$

for all $\tau \in QT(A)$, then

$$a \lesssim 1_{m+1} \otimes b$$

(i.e., there is
$$(s_n)_{\mathbb{N}} \subset M_{\infty}(A)$$
 with $s_n^*(1_{m+1} \otimes b)s_n \stackrel{n \to \infty}{\longrightarrow} a$).

DEFINITION

A unital simple C*-algebra A has m-comparison, if whenever $0 \neq a, b \in M_{\infty}(A)_+$ satisfy

$$d_{\tau}(a) < d_{\tau}(b)$$

for all $\tau \in QT(A)$, then

$$a \lesssim 1_{m+1} \otimes b$$

(i.e., there is
$$(s_n)_{\mathbb{N}} \subset M_{\infty}(A)$$
 with $s_n^*(1_{m+1} \otimes b)s_n \stackrel{n \to \infty}{\longrightarrow} a$).

A has comparison, if it has 0-comparison.

Some classification results

C*-algebraic regularity

Some classification results

Dynamic regularity: Z-actions

Towards other group action

THEOREM (Toms–W, 2009; using results by Lin, W, Lin–Niu, Lin–Phillips, Strung–W,...)
Let

 $\mathcal{E} = \{\mathcal{C}(X) \rtimes_{\beta} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,}$ $\beta \text{ induced by a minimal homeomorphism,}$ $\mathsf{K}_0 \text{ separates traces} \}.$

THEOREM (Toms–W, 2009; using results by Lin, W, Lin–Niu, Lin–Phillips, Strung–W,...)
Let

 $\mathcal{E} = \{\mathcal{C}(X) \rtimes_{\beta} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,}$ $\beta \text{ induced by a minimal homeomorphism,}$ $\mathsf{K}_0 \text{ separates traces} \}.$

For any $A \in \mathcal{E}$, $\dim_{\mathsf{nuc}} A < \infty \Longleftrightarrow A$ is \mathcal{Z} -stable $\Longleftrightarrow A$ has comparison.

THEOREM (Toms–W, 2009; using results by Lin, W, Lin–Niu, Lin–Phillips, Strung–W,...)
Let

 $\mathcal{E} = \{\mathcal{C}(X) \rtimes_{\beta} \mathbb{Z} \mid X \text{ compact, metrizable, infinite,}$ $\beta \text{ induced by a minimal homeomorphism,}$ $\mathsf{K}_0 \text{ separates traces} \}.$

For any $A \in \mathcal{E}$, $\dim_{\mathsf{nuc}} A < \infty \Longleftrightarrow A$ is \mathcal{Z} -stable $\Longleftrightarrow A$ has comparison.

Moreover, the regularity properties ensure classification by ordered K-theory in this case.

Show finite nuclear dimension.

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0.

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0.

Derive that $A_x \otimes \mathsf{UHF}$ is TAF and apply Lin's TAF classification.

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0.

Derive that $A_x \otimes \mathsf{UHF}$ is TAF and apply Lin's TAF classification.

QUESTIONS

(i) What if projections do not separate traces?

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0.

Derive that $A_x \otimes \mathsf{UHF}$ is TAF and apply Lin's TAF classification.

QUESTIONS

(i) What if projections do not separate traces?
 (E.g. for not uniquely ergodic minimal homeomorphisms of odd spheres.)

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0.

Derive that $A_x \otimes \mathsf{UHF}$ is TAF and apply Lin's TAF classification.

QUESTIONS

- (i) What if projections do not separate traces?
 (E.g. for not uniquely ergodic minimal homeomorphisms of odd spheres.)
- (ii) What about \mathbb{Z}^d -actions?

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0.

Derive that $A_x \otimes \mathsf{UHF}$ is TAF and apply Lin's TAF classification.

QUESTIONS

- (i) What if projections do not separate traces?
 (E.g. for not uniquely ergodic minimal homeomorphisms of odd spheres.)
- (ii) What about \mathbb{Z}^d -actions? (E.g. for free minimal \mathbb{Z}^d -actions on Cantor sets.)

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0. Derive that $A_x \otimes \mathsf{UHF}$ is TAF and apply Lin's TAF classification.

QUESTIONS

- (i) What if projections do not separate traces?
 (E.g. for not uniquely ergodic minimal homeomorphisms of odd spheres.)
- (ii) What about \mathbb{Z}^d -actions? (E.g. for free minimal \mathbb{Z}^d -actions on Cantor sets.)
- For (i), replace TAF by TASomething (e.g. TAI). This works in principle, but showing that $A_x \otimes \mathsf{UHF}$ is TASomething can be hard.

Show finite nuclear dimension.

Derive \mathcal{Z} -stability.

Derive that classification up to UHF-stability is enough.

Apply Berg's technique to show that classification of

 $A_x = C^*(\mathcal{C}(X), u\mathcal{C}_0(X \setminus \{x\}))$ up to UHF-stability is enough.

Observe that $A_x \otimes \mathsf{UHF}$ has finite decomposition rank and real rank 0. Derive that $A_x \otimes \mathsf{UHF}$ is TAF and apply Lin's TAF classification.

QUESTIONS

- (i) What if projections do not separate traces?
 (E.g. for not uniquely ergodic minimal homeomorphisms of odd spheres.)
- (ii) What about \mathbb{Z}^d -actions? (E.g. for free minimal \mathbb{Z}^d -actions on Cantor sets.)
- For (i), replace TAF by TASomething (e.g. TAI). This works in principle, but showing that $A_x \otimes \mathsf{UHF}$ is TASomething can be hard.
- For (ii), the problem is more severe, as it is not clear how to replace $A_{x_{1}}$

THEOREM (W, 2013)
Let S be F or I (finite dimensional C*-algebras or interval algebras).

THEOREM (W, 2013)

Let S be F or I (finite dimensional C*-algebras or interval algebras). Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and $T(A) \neq \emptyset$, and let

$$\left(A \xrightarrow{\sigma_i} B_i \xrightarrow{\varrho_i} A\right)_{i \in \mathbb{N}}$$

THEOREM (W, 2013)

Let S be F or I (finite dimensional C*-algebras or interval algebras). Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and $T(A) \neq \emptyset$, and let

$$\left(A \xrightarrow{\sigma_i} B_i \xrightarrow{\varrho_i} A\right)_{i \in \mathbb{N}}$$

1.
$$B_i \in S$$
, $i \in \mathbb{N}$

THEOREM (W, 2013)

Let S be F or I (finite dimensional C*-algebras or interval algebras). Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and $T(A) \neq \emptyset$, and let

$$\left(A \xrightarrow{\sigma_i} B_i \xrightarrow{\varrho_i} A\right)_{i \in \mathbb{N}}$$

- 1. $B_i \in S$, $i \in \mathbb{N}$
- 2. ϱ_i is an embedding for each $i \in \mathbb{N}$

THEOREM (W, 2013)

Let S be F or I (finite dimensional C*-algebras or interval algebras). Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and $T(A) \neq \emptyset$, and let

$$\left(A \xrightarrow{\sigma_i} B_i \xrightarrow{\varrho_i} A\right)_{i \in \mathbb{N}}$$

- 1. $B_i \in S$, $i \in \mathbb{N}$
- 2. ϱ_i is an embedding for each $i \in \mathbb{N}$
- 3. σ_i is c.p.c. for each $i \in \mathbb{N}$

THEOREM (W, 2013)

Let S be F or I (finite dimensional C*-algebras or interval algebras). Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and $T(A) \neq \emptyset$, and let

$$\left(A \xrightarrow{\sigma_i} B_i \xrightarrow{\varrho_i} A\right)_{i \in \mathbb{N}}$$

- 1. $B_i \in S$, $i \in \mathbb{N}$
- 2. ϱ_i is an embedding for each $i \in \mathbb{N}$
- 3. σ_i is c.p.c. for each $i \in \mathbb{N}$
- 4. $\bar{\sigma}: A \to \prod_{\mathbb{N}} B_i / \bigoplus_{\mathbb{N}} B_i$ induced by the σ_i is a unital *-homomorphism

The next result in particular implies that, in the presence of finite nuclear dimension, it is enough to find tracially uniformly large approximate embeddings into classifiable C*-algebras:

THEOREM (W, 2013)

Let S be F or I (finite dimensional C*-algebras or interval algebras). Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and $T(A) \neq \emptyset$, and let

$$\left(A \xrightarrow{\sigma_i} B_i \xrightarrow{\varrho_i} A\right)_{i \in \mathbb{N}}$$

be a system of maps with the following properties:

- 1. $B_i \in S$, $i \in \mathbb{N}$
- 2. ϱ_i is an embedding for each $i \in \mathbb{N}$
- 3. σ_i is c.p.c. for each $i \in \mathbb{N}$
- 4. $\bar{\sigma}: A \to \prod_{\mathbb{N}} B_i / \bigoplus_{\mathbb{N}} B_i$ induced by the σ_i is a unital *-homomorphism
- 5. $\sup\{|\tau(\varrho_i\sigma_i(a)-a)|\mid \tau\in T(A)\}\stackrel{i\to\infty}{\longrightarrow} 0 \text{ for each } a\in A.$

The next result in particular implies that, in the presence of finite nuclear dimension, it is enough to find tracially uniformly large approximate embeddings into classifiable C*-algebras:

THEOREM (W, 2013)

Let S be F or I (finite dimensional C*-algebras or interval algebras). Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and $T(A) \neq \emptyset$, and let

$$\left(A \xrightarrow{\sigma_i} B_i \xrightarrow{\varrho_i} A\right)_{i \in \mathbb{N}}$$

be a system of maps with the following properties:

- 1. $B_i \in S$, $i \in \mathbb{N}$
- 2. ϱ_i is an embedding for each $i \in \mathbb{N}$
- 3. σ_i is c.p.c. for each $i \in \mathbb{N}$
- 4. $\bar{\sigma}: A \to \prod_{\mathbb{N}} B_i / \bigoplus_{\mathbb{N}} B_i$ induced by the σ_i is a unital *-homomorphism
- 5. $\sup\{|\tau(\varrho_i\sigma_i(a)-a)|\mid \tau\in T(A)\}\stackrel{i\to\infty}{\longrightarrow} 0 \text{ for each } a\in A.$

Then, $A \otimes \mathsf{UHF}$ is TAS.

Strategy of proof:

Hypotheses yield an embedding

$$\lambda: A \otimes \mathsf{UHF} \to (A \otimes \mathsf{UHF})_{\infty}$$

which is TAS (as a map).

Strategy of proof:

Hypotheses yield an embedding

$$\lambda: A \otimes \mathsf{UHF} \to (A \otimes \mathsf{UHF})_{\infty}$$

which is TAS (as a map).

The image

$$\lambda(A \otimes \mathsf{UHF}) \subset (A \otimes \mathsf{UHF})_{\infty}$$

is in general position, but one can use finite nuclear dimension and strict comparison to move it into a position compatible with the canonical embedding

$$A \otimes \mathsf{UHF} \subset (A \otimes \mathsf{UHF})_{\infty}$$
.

Strategy of proof:

Hypotheses yield an embedding

$$\lambda: A \otimes \mathsf{UHF} \to (A \otimes \mathsf{UHF})_{\infty}$$

which is TAS (as a map).

The image

$$\lambda(A \otimes \mathsf{UHF}) \subset (A \otimes \mathsf{UHF})_{\infty}$$

is in general position, but one can use finite nuclear dimension and strict comparison to move it into a position compatible with the canonical embedding

$$A \otimes \mathsf{UHF} \subset (A \otimes \mathsf{UHF})_{\infty}$$
.

Now the canonical embedding will be TAS as well.

COROLLARY (Special case of Matui–Sato, 2013) Let A be a separable, simple, unital, monotracial C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$. Suppose that A is quasidiagonal. Then, $A \otimes \mathsf{UHF}$ is TAF.

COROLLARY (Special case of Matui–Sato, 2013) Let A be a separable, simple, unital, monotracial C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$. Suppose that A is quasidiagonal. Then, $A \otimes \mathsf{UHF}$ is TAF.

PROOF

Quasidiagonality yields approximate maps

 $A \otimes \mathsf{UHF} \to \mathcal{Q}$.

COROLLARY (Special case of Matui-Sato, 2013)

Let A be a separable, simple, unital, monotracial C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$. Suppose that A is quasidiagonal.

Then, $A \otimes \mathsf{UHF}$ is TAF.

PROOF

Quasidiagonality yields approximate maps

$$A \otimes \mathsf{UHF} \to \mathcal{Q}$$
.

Choose tracially large embeddings

$$\mathcal{Q} \rightarrow \mathsf{UHF} \rightarrow A \otimes \mathsf{UHF}$$

and apply the theorem.

THEOREM

Let A be a separable, simple, unital C*-algebra with $\dim_{\mathsf{nuc}} A < \infty$ and real rank zero; suppose $\partial_e T(A)$ is nonempty and compact.

THEOREM

Let A be a separable, simple, unital C^* -algebra with $\dim_{\mathsf{nuc}} A < \infty$ and real rank zero; suppose $\partial_e T(A)$ is nonempty and compact. Suppose further that for each $\tau \in \partial_e T(A)$ there are a simple, unital, monotracial AF algebra D with trace δ and a unital embedding

$$\beta: A \to D$$

with

$$\delta \circ \beta = \tau$$
.

THEOREM

Let A be a separable, simple, unital C^* -algebra with $\dim_{\mathsf{nuc}} A < \infty$ and real rank zero; suppose $\partial_e T(A)$ is nonempty and compact. Suppose further that for each $\tau \in \partial_e T(A)$ there are a simple, unital, monotracial AF algebra D with trace δ and a unital embedding

$$\beta: A \to D$$

with

$$\delta \circ \beta = \tau$$
.

Then, $A \otimes \mathcal{Q}$ is TAF.

Let X be a metrizable compact Hausdorff space with finite covering dimension and let $\alpha: \mathbb{Z}^d \to \mathsf{Homeo}(X)$ be a free, minimal action with compact space of ergodic measures.

Let X be a metrizable compact Hausdorff space with finite covering dimension and let $\alpha: \mathbb{Z}^d \to \mathsf{Homeo}(X)$ be a free, minimal action with compact space of ergodic measures. Suppose further that projections in $\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}^d$ separate traces.

Let X be a metrizable compact Hausdorff space with finite covering dimension and let $\alpha: \mathbb{Z}^d \to \mathsf{Homeo}(X)$ be a free, minimal action with compact space of ergodic measures. Suppose further that projections in $\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}^d$ separate traces.

Then, $C(X) \rtimes_{\alpha} \mathbb{Z}^d$ is rationally TAF. In particular, crossed products of this form are classified by their ordered K-theory.

Let X be a metrizable compact Hausdorff space with finite covering dimension and let $\alpha: \mathbb{Z}^d \to \mathsf{Homeo}(X)$ be a free, minimal action with compact space of ergodic measures. Suppose further that projections in $\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}^d$ separate traces.

Then, $C(X) \rtimes_{\alpha} \mathbb{Z}^d$ is rationally TAF. In particular, crossed products of this form are classified by their ordered K-theory.

Trace preserving AF-embeddings were provided by Lin.

Let X be a metrizable compact Hausdorff space with finite covering dimension and let $\alpha: \mathbb{Z}^d \to \mathsf{Homeo}(X)$ be a free, minimal action with compact space of ergodic measures. Suppose further that projections in $\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}^d$ separate traces.

Then, $C(X) \rtimes_{\alpha} \mathbb{Z}^d$ is rationally TAF. In particular, crossed products of this form are classified by their ordered K-theory.

Trace preserving AF-embeddings were provided by Lin.

To get finite nuclear dimension we need dynamic versions of our regularity properties.

C*-algebraic regularit

Some classification result

Dynamic regularity: \mathbb{Z} -actions

Towards other group action:

DEFINITION (based on Hirshberg–W–Zacharias) Let X be compact, metrizable, infinite, and $\alpha:\mathbb{Z}\curvearrowright X$ an action.

Let X be compact, metrizable, infinite, and $\alpha: \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \le n$, if the following holds:

Let X be compact, metrizable, infinite, and $\alpha: \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \le n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} | i \in \{0,\ldots,n\}, k \in \{1,\ldots,K^{(i)}\}, l \in \{0,\ldots,L\})$$

of open subsets

Let X be compact, metrizable, infinite, and $\alpha: \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \le n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} | i \in \{0,\ldots,n\}, k \in \{1,\ldots,K^{(i)}\}, l \in \{0,\ldots,L\})$$

of open subsets such that

$$\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)} \text{ for }$$

$$i \in \{0, \dots, n\}, \ k \in \{1, \dots, K^{(i)}\}, \ l \in \{0, \dots, L-1\}$$

Let X be compact, metrizable, infinite, and $\alpha: \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \le n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} | i \in \{0,\ldots,n\}, k \in \{1,\ldots,K^{(i)}\}, l \in \{0,\ldots,L\})$$

of open subsets such that

- $\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)} \text{ for }$ $i \in \{0, \dots, n\}, \ k \in \{1, \dots, K^{(i)}\}, \ l \in \{0, \dots, L-1\}$
- ▶ for each fixed $i \in \{0, ..., n\}$ the sets $U_{k,l}^{(i)}$ are pairwise disjoint

Let X be compact, metrizable, infinite, and $\alpha: \mathbb{Z} \curvearrowright X$ an action. We say (X, \mathbb{Z}, α) has dynamic dimension at most n, $\dim(X, \mathbb{Z}, \alpha) \le n$, if the following holds:

For any open cover \mathcal{U} of X and any $L \in \mathbb{N}$, there is a system

$$(U_{k,l}^{(i)} | i \in \{0,\ldots,n\}, k \in \{1,\ldots,K^{(i)}\}, l \in \{0,\ldots,L\})$$

of open subsets such that

- $\alpha_1(U_{k,l}^{(i)}) = U_{k,l+1}^{(i)} \text{ for }$ $i \in \{0,\ldots,n\}, \ k \in \{1,\ldots,K^{(i)}\}, \ l \in \{0,\ldots,L-1\}$
- ▶ for each fixed $i \in \{0, \dots, n\}$ the sets $U_{k,l}^{(i)}$ are pairwise disjoint
- ▶ $(U_{k,l}^{(i)} \mid i \in \{0,\ldots,n\}, k \in \{1,\ldots,K^{(i)}\}, l \in \{0,\ldots,L\})$ is an open cover of X refining \mathcal{U} .

▶ We think of n + 1 as the number of colors, of $K^{(i)}$ as the number of towers of color i, and of L as the length of the towers.

- ▶ We think of n + 1 as the number of colors, of $K^{(i)}$ as the number of towers of color i, and of L as the length of the towers.
- ▶ In a similar vein, one can define dynamic versions of comparison and of *Z*-stability.

- ▶ We think of n + 1 as the number of colors, of $K^{(i)}$ as the number of towers of color i, and of L as the length of the towers.
- In a similar vein, one can define dynamic versions of comparison and of Z-stability.
- ► The three notions are closely related, especially in the minimal, uniquely ergodic case.

- ▶ We think of n + 1 as the number of colors, of $K^{(i)}$ as the number of towers of color i, and of L as the length of the towers.
- In a similar vein, one can define dynamic versions of comparison and of Z-stability.
- ► The three notions are closely related, especially in the minimal, uniquely ergodic case.
- ▶ For \mathbb{Z}^d -actions, one simply replaces $\{0,\ldots,L\}$ by $\{0,\ldots,L\}^d$.

THEOREM (Szabó, 2013; generalizing Hirshberg–W–Zacharias, 2011) Let $(X, \mathbb{Z}^d, \alpha)$ be free.

THEOREM (Szabó, 2013; generalizing Hirshberg–W–Zacharias, 2011)

Let $(X, \mathbb{Z}^d, \alpha)$ be free. If $\dim X < \infty$, then $\dim(X, \mathbb{Z}^d, \alpha) < \infty$.

THEOREM (Szabó, 2013; generalizing Hirshberg–W–Zacharias, 2011)

Let $(X, \mathbb{Z}^d, \alpha)$ be free. If $\dim X < \infty$, then $\dim(X, \mathbb{Z}^d, \alpha) < \infty$.

As a consequence, $\dim_{\mathsf{nuc}}(\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}^d)$ is finite.

THEOREM (Szabó, 2013; generalizing Hirshberg–W–Zacharias, 2011)

Let $(X, \mathbb{Z}^d, \alpha)$ be free. If $\dim X < \infty$, then $\dim(X, \mathbb{Z}^d, \alpha) < \infty$.

As a consequence, $\dim_{\mathsf{nuc}}(\mathcal{C}(X) \rtimes_{\alpha} \mathbb{Z}^d)$ is finite.

The proof uses Gutman's marker property and Lindenstrauss' topological small boundary property. The arguments for \mathbb{Z} and for \mathbb{Z}^d are not that much different.

C*-algebraic regularit

Some classification results

Dynamic regularity: \mathbb{Z} -actions

Towards other group actions

What about more general groups?

What about more general groups?

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0, \ldots, L\}$.

What about more general groups?

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0, \ldots, L\}$. In this case, there is a nice *relative* result:

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex X (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex X (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0,\ldots,L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex X (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying

 $ightharpoonup \mathcal{U}$ has covering number (or dimension) at most d

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0,\ldots,L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex X (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

- U has covering number (or dimension) at most d
- ▶ for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0,\ldots,L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex X (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

- ▶ U has covering number (or dimension) at most d
- ▶ for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex X (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

- U has covering number (or dimension) at most d
- ▶ for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in \mathcal{U}$, either gU = U or $gU \cap U = \emptyset$

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0, \ldots, L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex \bar{X} (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

- ▶ U has covering number (or dimension) at most d
- ▶ for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in \mathcal{U}$, either gU = U or $gU \cap U = \emptyset$
- ▶ for every $U \in \mathcal{U}$, the subgroup $G_U = \{g \in G \mid gU = U\}$ is virtually cyclic (contains a cyclic subgroup with finite index).

For G finitely generated with word length metric, one might use $B_L(e)$ in place of $\{0,\ldots,L\}$. In this case, there is a nice *relative* result:

THEOREM (Bartels-Lück-Reich)

Let G be a hyperbolic group acting on its Rips complex X (G acts freely, \bar{X}/G is compact, \bar{X} is contractible).

Then, there is $d \in \mathbb{N}$ such that the following holds: For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times \bar{X}$ satisfying

- U has covering number (or dimension) at most d
- ▶ for every $x \in \bar{X}$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- for every $g \in G$ and $U \in \mathcal{U}$, either gU = U or $gU \cap U = \emptyset$
- ▶ for every $U \in \mathcal{U}$, the subgroup $G_U = \{g \in G \mid gU = U\}$ is virtually cyclic (contains a cyclic subgroup with finite index).

(This plays a crucial role in their proof of the Farrell-Jones conjecture for hyperbolic groups.)

W. Winter (WWU Münster)

For $\ensuremath{\mathbb{Z}}$ -actions, we can characterize finite dynamic dimension along these lines:

For \mathbb{Z} -actions, we can characterize finite dynamic dimension along these lines:

THEOREM (Bartels-W)

For (X, \mathbb{Z}, α) , $\dim(X, \mathbb{Z}, \alpha) < \infty$ if and only if there is $d \in \mathbb{N}$ such that the following holds:

For \mathbb{Z} -actions, we can characterize finite dynamic dimension along these lines:

THEOREM (Bartels-W)

For (X, \mathbb{Z}, α) , $\dim(X, \mathbb{Z}, \alpha) < \infty$ if and only if there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

For \mathbb{Z} -actions, we can characterize finite dynamic dimension along these lines:

THEOREM (Bartels-W)

For (X, \mathbb{Z}, α) , $\dim(X, \mathbb{Z}, \alpha) < \infty$ if and only if there is $d \in \mathbb{N}$ such that the following holds:

For any $L \in \mathbb{N}$ there is an open cover \mathcal{U} of $G \times X$ satisfying

- ▶ U has covering number (or dimension) at most d
- ▶ for every $x \in X$, $B_L(e) \times \{x\} \subset U$ for some $U \in \mathcal{U}$
- ▶ for every $g \in G$ and $U \in \mathcal{U}$, $gU \in \mathcal{U}$
- ▶ for every $0 \neq g \in G$ and $U \in \mathcal{U}$, $gU \cap U = \emptyset$, i.e., for every $U \in \mathcal{U}$, the subgroup $G_U = \{g \in G \mid gU = U\}$ is trivial.